## Energy Conservation Program Presentation For Department of Electrical Engineering Silesian Technical University, Gliwice



# **Building Energy Auditing**

Prepared by Henry Manczyk, C.P.E., C.E.M. Manczyk Energy Consulting

June 1, 2004

## **Energy Management Program In Facilities**

- An Energy Management Program is a systematic approach for controlling a building's energy utilization so as to reduce energy waste to the absolute minimum without adversely affecting the building's functional requirements.
- For a municipality to have a successful energy management program, it must create an environment of established goals to prevent waste and protect the assets of facilities; management must understand and support the importance of energy efficiency, environmental quality, and the programming of energy improvements; and a significant portion of energy savings must be reinvested in the energy management program.



## **Goals and Objectives**

- Audit the energy consumption of selected buildings to determine which types of energy are used and the amount of each.
- Analyze which operations/processes consume extensive amounts of energy in each building
- Plan measures by which individual building can conserve energy used in their high-energy using operations/processes.
- Provide consultation to managers of buildings that were audited in an attempt to reduce the consumption of energy in their facility.
- Provide a pathway to benchmark energy conservation methods that can be used in other buildings and facilities.
- Identify the major construction, maintenance and design features that make building energy efficient.

## **Strategies of Energy Savings Program - "1"**

- 1. Evaluate Your Facilities to Identify Potential Energy Savings Measures
  - a. Perform energy accounting audit of facilities, compare results to industry standards.
  - b. Assess potential energy savings opportunities in each facility, including building envelope as well as mechanical and engineering systems based on energy audit results by means of a "walk-through audit."
  - c. Inventory mechanical and electrical systems and their operating schedules.
  - d. Identify existing monitoring and metering equipment.
  - e. Interview facilities' users about operating and comfort needs.
  - f. Evaluate the facility operating schedule and the operating and maintenance practices of current operation and maintenance staff.
  - g. Develop a "potential energy savings opportunity checklist" for each facility.
  - h. Select, evaluate the feasibility of and design new, energy-efficient systems and equipment that may be implemented in each facility.

#### **Consider such measures:**

- (1)Computerized energy management systems for automated equipment operation and monitoring and performance and energy consumption;
- (2) Additional monitoring and metering equipment;
- (3) Integration of innovative technologies.

# Strategies of Energy Savings Program - "2"

#### 2. <u>Examine Your Regulatory and Rate/Cost Environment</u>

- a. Determine whether and how local utility or energy supply costs vary with time of use, season of use, peak usage, etc.
- **b.** Identify sources for lowest cost purchase of fuels and electricity.
- c. Identify relevant local standards for indoor air quality, environmental emissions, etc. that apply to your facilities.



### **3.** Examine Financial Opportunities

- a. Identify grants, incentives, etc., available from local, national, and international sources that may apply to your facilities.
- b. Consider potential collaborations and partnerships with other local industries, utilities, governmental facilities, etc.

## **Strategies of Energy Savings Program - "4"**

- 4. Analyze the economics and feasibility of opportunities for Energy Savings measures identified above including potential savings, longterm cost avoidance, and payback periods
  - a. Determine implementation schedule, costs, and payback period for each measure.
  - b. Identify and implement measures that you can finance from your current operating budget by applying savings from current cost reductions (these will generally be low-cost/no-cost measures).
  - c. Project the cost savings and cost avoidance value of all measures for a 3-5 year period beyond your current budget year.
  - d. Program standards:
    - (1) The first program implemented in a conventional facility should yield up to a 40% energy consumption reduction.
    - (2) Subsequent programs implemented should maintain or reduce the accomplished levels of energy consumption.
    - (3) Measures should result in:
      - a) longer service lives of building systems;
      - b) environmental improvements; and,
      - c) maintain comfort levels and other services provided for building occupants.

Why Should You Have An Energy Accounting Audit

## You can't manage what you don't measure!

### Purposes:

- Track utility costs
- Account for current energy consumption and cost
- Identify areas where opportunities for savings may exist
- Justify capital investment decisions
- Identify and correct consumption problems
- Pinpoint billing errors



 Identify relationships between energy use and factors such as occupancy and outdoor temperatures.

 Once patterns are established, potential problems such as equipment malfunctions can be identified and corrected.

# **Information Gathering - 1**

- Assemble copies of all monthly utility bills.
- Characterize utility bills either by building or by meter, and organize them into 12month blocks using the meter-read dates.
- Familiarize yourself with all meters and sub-meters. If several meters are used, it is helpful to clearly label them on a blueprint for each facility being monitored.
- Determine which facility or space is being served by each meter.



- Obtain historical energy data to establish a base year. If you don't have this information in your files, it can be obtained from your local utility company.
- Obtain degree-day data. This information may be obtained from your utility company, National Oceanic and Atmospheric Administration, or your local weather stations.



## **Purpose Of The Audit**

 The building energy accounting audit provides a detailed weather-adjusted evaluation of the historical energy utility (electric, natural gas, oil, and steam) usage and costs for the facility that was audited.



# An Audit Will Assist In:

- The initial stages of project development;
- The ongoing monitoring and verification of a specific facility's project savings; and,
- Identifying facilities to target conservation project efforts supported by an energy audit and complete economic analysis.

# **Comparative Energy Consumption**

|              | Apollo Office Building   |              |              |              |              |               |             |             |           |           |  |  |
|--------------|--------------------------|--------------|--------------|--------------|--------------|---------------|-------------|-------------|-----------|-----------|--|--|
|              | Comparative Energy Usage |              |              |              |              |               |             |             |           |           |  |  |
| 1999 vs 1998 |                          |              |              |              |              |               |             |             |           |           |  |  |
|              |                          |              |              |              |              |               |             |             |           |           |  |  |
|              | No                       | on-Weather I | Related Ener | .gv          | V            | Veather Rela  | ated Energy | 1           |           |           |  |  |
|              | Electric Consu           | imption, KWH | Electric     | c Costs      | Steam Consur | nption, M-Lbs | Steam       | Costs       | Degree    | e Days    |  |  |
|              | 1998                     | 1999         | 1998         | 1999         | 1998         | 1999          | 1998        | 1999        | 1998 D.D. | 1999 D.D. |  |  |
| Jan          | 227,418                  | 203,383      | \$22,421.60  | \$19,952.37  | 527.3        | 919.7         | \$4,603.33  | \$7,449.57  | 1,033     | 1,295     |  |  |
| Feb          | 208,619                  | 179,951      | \$20,776.34  | \$18,078.52  | 448.2        | 657.2         | \$3,912.79  | \$5,323.32  | 900       | 952       |  |  |
| Mar          | 202,848                  | 185,158      | \$20,306.09  | \$18,415.97  | 488.6        | 742.2         | \$4,265.48  | \$6,011.82  | 837       | 1056      |  |  |
| Apr          | 227,492                  | 186,749      | \$22,859.58  | \$18,937.53  | 213.1        | 215.5         | \$1,860.36  | \$1,745.55  | 507       | 585       |  |  |
| May          | 220,125                  | 178,854      | \$22,688.75  | \$19,208.25  | 26.5         | 20.2          | \$231.35    | \$163.62    | 114       | 194       |  |  |
| Jun          | 222,917                  | 202,773      | \$23,063.63  | \$21,504.25  | 0            | 0             | \$0.00      | \$0.00      | 114       | 57        |  |  |
| Jul          | 245,599                  | 226,457      | \$24,702.13  | \$23,127.21  | 0            | 0             | \$0.00      | \$0.00      | 4         | 2         |  |  |
| Aug          | 219,681                  | 213,470      | \$22,755.12  | \$19,629.41  | 0            | 0             | \$0.00      | \$0.00      | 11        | 25        |  |  |
| Sep          | 210,197                  | 196,599      | \$21,852.04  | \$18,061.44  | 0            | 0             | \$0.00      | \$0.00      | 115       | 93        |  |  |
| Oct          | 183,938                  | 172,914      | \$19,615.44  | \$16,242.93  | 139.9        | 212.9         | \$1,133.19  | \$1,728.75  | 425       | 431       |  |  |
| Nov          | 163,117                  | 160,089      | \$16,779.54  | \$15,386.82  | 461          | 426.5         | \$3,734.10  | \$3,463.18  | 686       | 584       |  |  |
| Dec          | 165,758                  | 164,589      | \$17,009.35  | \$14,978.76  | 457.1        | 483.3         | \$3,702.51  | \$3,924.40  | 929       | 1012      |  |  |
|              |                          |              |              |              |              |               |             |             |           |           |  |  |
| Total        | 2,497,709                | 2,270,986    | \$254,829.61 | \$223,523.46 | 2,762        | 3,678         | \$23,443.10 | \$29,810.20 | 5,675     | 6,286     |  |  |



### **Energy Performance Indicators Current Year Versus Prior Year**

| Apoll    | 0 (           | Office Buildin | ng                  |                                  |               |             |             |                   |               |         |  |
|----------|---------------|----------------|---------------------|----------------------------------|---------------|-------------|-------------|-------------------|---------------|---------|--|
|          |               |                |                     |                                  |               |             |             |                   |               |         |  |
|          |               | ELECTRIC       |                     | STEAM                            |               | DEGREE      |             |                   |               |         |  |
| MONT     | Ή             | CONSUMPTION    | COST                | CONSUMPTION                      | COST          | DAYS        |             | CURRENT SQU       | ARE FOOTAGE:  | 167,212 |  |
| Jan-     | 98            | 227,418.00     | \$22,421.60         | 527.30                           | \$4,271.13    | 1,033       |             |                   |               |         |  |
| Jan-     | 99            | 203,383.00     | \$19,952.37         | 919.70                           | \$7,449.57    | 1,295       |             |                   |               |         |  |
|          | 00            | 200 (10 00     | #20 FFF 24          | 140.00                           | #2.520.42     |             |             |                   |               |         |  |
| Feb-     | 98            | 208,619.00     | \$20,776.34         | 448.20                           | \$3,630.42    | 900         |             |                   | <b>F1</b> ( ) | C.      |  |
| Feb-     | 99            | 179,951.00     | \$18,078.52         | 657.20                           | \$5,323.32    | 952         |             | MMBIU             | Electric      | Steam   |  |
| Man      | 00            | 202 848 00     | \$20,206,00         | 199.60                           | \$2.057.66    | 027         |             | 1998              | 6,323         | 3,264   |  |
| Mar-     | 98            | 202,848.00     | \$20,506.09         | 468.00                           | \$5,937.00    | 1.056       |             | 1999              | 7,749         | 4,575   |  |
| Iviai-   | <del>99</del> | 165,156.00     | \$10,413.97         | 742.20                           | \$0,011.82    | 1,050       |             |                   |               |         |  |
| A pr-    | 98            | 227 492 00     | \$22,859,58         | 213.10                           | \$1,726,11    | 507         |             | BTU/(SF*DD)       |               |         |  |
| A pr-    | 99            | 186 749 00     | \$18,937,53         | 215.10                           | \$1,725.11    | 585         |             | 1998              | 12.44         |         |  |
| - Apr    | ~             | 100,749.00     | \$10,757.55         | 215.50                           | \$1,745.55    | 565         |             | 1999              | 11.53         |         |  |
| May-     | 98            | 220 125 00     | \$22 688 75         | 26.50                            | \$214.65      | 114         |             | 1777              | 11.55         |         |  |
| May-     | 99            | 178 854 00     | \$19,208,25         | 20.30                            | \$163.62      | 194         |             |                   |               |         |  |
| may      |               | 170,00 1100    | \$19,200.20         | 20.20                            | \$105.02      | 12.         |             | REDUCTION         |               | 7.31%   |  |
| Jun-     | 98            | 222.917.00     | \$23.063.63         | 0.00                             | \$0.00        | 114         |             |                   |               | /.51/0  |  |
| Jun-     | 99            | 202.773.00     | \$21,504.25         | 0.00                             | \$0.00        | 57          |             |                   |               |         |  |
|          |               | ,              |                     |                                  | 40.00         |             |             | BTU/SF            |               |         |  |
| Jul-     | 98            | 245,599,00     | \$24,702,13         | 0.00                             | \$0.00        | 4           |             | 1998              | 70.606        |         |  |
| Jul-     | 99            | 226,457.00     | \$23,127.21         | 0.00                             | \$0.00        | 2           |             | 1999              | 72,492        |         |  |
|          |               |                |                     |                                  |               |             |             |                   |               |         |  |
| Aug-     | 98            | 219,681.00     | \$22,755.12         | 0.00                             | \$0.00        | 11          |             |                   |               |         |  |
| Aug-     | 99            | 213,470.00     | \$19,629.41         | 0.00                             | \$0.00        | 25          |             | REDUCTION         |               | (2.67%) |  |
|          |               |                |                     |                                  |               |             |             |                   |               |         |  |
| Sep-     | 98            | 210,197.00     | \$21,852.04         | 0.00                             | \$0.00        | 115         |             |                   |               |         |  |
| Sep-     | 99            | 196,599.00     | \$18,061.44         | 0.00                             | \$0.00        | 93          |             | COST/SF           |               |         |  |
|          |               |                |                     |                                  |               |             |             | 1998              | 1.66          |         |  |
| Oct-     | 98            | 183,938.00     | \$19,615.44         | 139.90                           | \$1,133.19    | 425         |             | 1999              | 1.51          |         |  |
| Oct-     | 99            | 172,914.00     | \$16,242.93         | 212.90                           | \$1,724.49    | 431         |             |                   |               |         |  |
|          |               |                |                     |                                  |               |             |             |                   |               |         |  |
| Nov-     | 98            | 163,117.00     | \$16,779.54         | 461.00                           | \$3,734.10    | 686         |             |                   |               |         |  |
| Nov-     | 99            | 160,089.00     | \$15,386.82         | 426.50                           | \$3,454.65    | 584         |             | Total Cost Avoida | nce:          |         |  |
|          |               |                |                     |                                  |               |             |             |                   |               |         |  |
| Dec-     | 98            | 165,758.00     | \$17,009.35         | 457.10                           | \$3,702.51    | 929         |             |                   | \$17,305.84   |         |  |
| Dec-     | 99            | 164,589.00     | \$14,978.76         | 483.30                           | \$3,914.73    | 1,012       |             |                   |               |         |  |
| TOTAL    | 00            | 2 407 700 00   | ¢054.000.61         | 2 7 (1 70                        | ¢22.260.77    | E (7)E      |             |                   |               |         |  |
| TOTAL    | 98            | 2,497,709.00   | \$254,829.61        | 2,761.70                         | \$22,369.77   | 5,675       |             |                   |               |         |  |
| TOTAL    | 99            | 2,270,986.00   | \$223,523.46        | 3,677.50                         | \$29,787.75   | 6,286       |             |                   |               |         |  |
|          |               |                |                     |                                  |               |             |             |                   |               |         |  |
| Steam    |               |                |                     |                                  |               |             |             |                   |               |         |  |
| Cost Av  | oida          | ance:          | CURRENT [\$/UNI]    | $\Gamma$ ]*( <i>BASE</i> [CONS/D | D]-CURRENT[CC | NS/DD])* CU | RRENT[DD] = | Cost Avoidance    |               |         |  |
|          |               |                | 8.10                | 0.49                             | 0.59          |             | 6,286       | (\$5,009.53)      |               |         |  |
|          |               |                |                     |                                  |               |             |             |                   |               |         |  |
| Electric |               |                | CLUB DEDUCT 14 CONT |                                  | GUDDEDUT CO.  |             |             |                   |               |         |  |
| Cost Av  | oida          | ance:          | CURRENT [\$/KW      | HJ * (BASE CONS                  | - CURRENT CON | IS) =       |             | Cost Avoidance    |               |         |  |
|          |               |                | 0.098426            | 2,497,709                        | 2,270,986     |             |             | \$22,315.38       |               |         |  |
|          |               |                |                     |                                  |               |             |             |                   |               |         |  |
|          |               |                |                     |                                  |               |             |             |                   |               |         |  |



### **Energy Performance Indicators Current Year Versus Base Year**

| Apollo   | Office Building |                              |                 |               |        |       |                    |              |         |
|----------|-----------------|------------------------------|-----------------|---------------|--------|-------|--------------------|--------------|---------|
|          | ELECTRIC        |                              | STEAM           |               | DECREE |       |                    |              |         |
| MONTI    | I CONSUMPTION   | COST                         | CONSUMPTION     | COST          | DAVS   |       | CURPENT SOUL       | PE FOOTACE:  | 167 212 |
| Ion      | 215 218 00      | \$22.681.60                  | 261.00          | \$6.074.10    | 1 222  |       | CORRENT SQUA       | KETOOTAGE.   | 107,212 |
| Ian- G   | 9 203 383 00    | \$19,952.37                  | 919.70          | \$7,449,57    | 1,225  |       |                    |              |         |
| Jui      | 205,505.00      | φ1 <i>)</i> , <i>)</i> 52.57 | 515.70          | \$7,449.57    | 1,295  |       |                    |              |         |
| Eeb- S   | 295 181 00      | \$21 732 38                  | 945 50          | \$7 658 55    | 1 153  |       |                    |              |         |
| Feb- 9   | 179 951 00      | \$18,078,52                  | 657.20          | \$5 323 32    | 952    |       | MMBTU              | Electric     | Steam   |
| 100      | 177,551.00      | \$10,070.52                  | 057.20          | \$5,525.52    | 752    |       | 1987               | 12 828       | 4 310   |
| Mar- S   | 301 336 00      | \$20,502,85                  | 577 50          | \$4 677 75    | 858    |       | 1999               | 7 749        | 4 373   |
| Mar- 9   | 9 185 158 00    | \$18 415 97                  | 742.20          | \$6,011,82    | 1.056  |       | 1777               | 1,145        | -,,575  |
| iviai 2  | 105,150.00      | \$10,415.57                  | 742.20          | \$0,011.02    | 1,050  |       |                    |              |         |
| Apr- 8   | 293.368.00      | \$17.854.20                  | 236.40          | \$1.914.84    | 454    |       | BTU/(SF*DD)        |              |         |
| Apr- 9   | 186 749 00      | \$18 937 53                  | 215 50          | \$1,745,55    | 585    |       | 1987               | 15.96        |         |
|          | 100,719100      | \$10,557.55                  | 210.00          | \$1,7 10100   | 200    |       | 1999               | 11.53        |         |
| May- 8   | 295 532 00      | \$18 607 15                  | 67 50           | \$546.75      | 234    |       |                    | 11.00        |         |
| May-     | 178 854 00      | \$19,007.15                  | 20.20           | \$163.62      | 194    |       |                    |              |         |
| intay 2  | 170,054.00      | \$15,200.25                  | 20.20           | \$105.02      | 1)4    |       | REDUCTION          |              | 27 73%  |
| Inn- 8   | 315 342 00      | \$23,077,63                  | 69.10           | \$559.71      | 39     |       | 1020011011         |              | 2111370 |
| Jun- G   | 202 773 00      | \$21,504,25                  | 0.00            | \$0.00        | 57     |       |                    |              |         |
| Jun      | 202,775.00      | φ21,504.25                   | 0.00            | φ0.00         | 57     |       | BTU/SE             |              |         |
| Inl- 8   | 365 532 00      | \$30 557 59                  | 60.20           | \$487.62      | 7      |       | 1987               | 102 490      |         |
| Jul- 0   | 9 226 457 00    | \$23,127,21                  | 0.00            | \$0.00        | 2      |       | 1999               | 72 492       |         |
| Jui      | 220,457.00      | φ25,127.21                   | 0.00            | φ0.00         | 2      |       | 1777               | 12,472       |         |
| Δ11.0- 5 | 361 236 00      | \$32,034,78                  | 40.10           | \$324.81      | 50     |       |                    |              |         |
| Aug C    | 9 213 470 00    | \$19,629,41                  |                 | \$0.00        | 25     |       | REDUCTION          |              | 29.27%  |
| Thug 2   | 213,470.00      | \$15,025.41                  | 12.00           | φ0.00         | 25     |       | Reportion          |              | 27.2770 |
| Sen 9    | 336 537 00      | \$30,314,40                  | 40.10           | \$324.81      | 130    |       |                    |              |         |
| Sep- 6   | 196 599 00      | \$18,061,44                  | 40.10           | \$0.00        | 93     |       | COST/SE            |              |         |
| Bep 2    | 190,599.00      | \$10,001.                    | 0.00            | φ0.00         | 75     |       | 1987               | 1.83         |         |
| Oct- 5   | 288 328 00      | \$21 697 39                  | 134.40          | \$1.088.64    | 547    |       | 1999               | 1.05         |         |
| Oct- 9   | 172 914 00      | \$16 242 93                  | 212.90          | \$1,000.04    | 431    |       | 1777               | 1.51         |         |
|          | 172,914.00      | \$10,242.95                  | 212.90          | φ1,724.49     | 451    |       |                    |              |         |
| Nov- 8   | 291 872 00      | \$18 179 10                  | 273 30          | \$2 213 73    | 722    |       |                    |              |         |
| Nov- 9   | 160,089,00      | \$15,386,82                  | 426.50          | \$3,454,65    | 584    |       | Total Cost Avoidan | ice.         |         |
| 1101     | 100,005100      | \$15,500.02                  | 120.00          | 45,151105     | 501    |       |                    |              |         |
| Dec- 8   | 300.049.00      | \$19 790 21                  | 319.40          | \$2 587 14    | 997    |       |                    | \$145 455 63 |         |
| Dec- 9   | 9 164.589.00    | \$14,978,76                  | 483.30          | \$3,914,73    | 1.012  |       |                    | \$110,100.00 |         |
|          | ,               | , <i>p</i>                   |                 | 127           | 7-     |       |                    |              |         |
| TOTAL 8  | 3,759,531.00    | \$277,029.28                 | 3,624.50        | \$29,358.45   | 6,423  |       |                    |              |         |
| TOTAL 9  | 9 2,270,986.00  | \$223,523.46                 | 3,677.50        | \$29,787.75   | 6,286  |       |                    |              |         |
|          | , ,             |                              |                 |               |        |       |                    |              |         |
| Steam    |                 |                              |                 |               |        |       |                    |              |         |
| Cost Ave | idance:         | CURRENT [\$/I INIT           | 1*(BASE [CONS/D |               |        |       | Cost Avoidance     |              |         |
| COSTINU  |                 | 8 10                         | 0.56            | 0.59          |        | 6 286 | (\$1,055,50)       |              |         |
|          |                 | 0.10                         | 0.50            | 0.39          |        | 0,200 | (\$1,055.50)       |              |         |
| Electric |                 |                              |                 |               |        |       |                    |              |         |
| Cost Ave | oidance:        | CURRENT [\$/KW               | HI * (BASE CONS | - CURRENT CON | (S) =  |       | Cost Avoidance     |              |         |
|          |                 | 0.098426                     | 3.759.531       | 2.270.986     |        |       | \$146.511.13       |              |         |
|          |                 |                              |                 |               |        |       |                    |              |         |
|          |                 |                              |                 |               |        |       |                    |              |         |

**Cost Avoidance/Savings Calculations** 

|                          |          | <u>CO</u>    | ): | ST AVOIDA    |          | CE/SAVING    | <u> </u>           |              |           |                                         |        |
|--------------------------|----------|--------------|----|--------------|----------|--------------|--------------------|--------------|-----------|-----------------------------------------|--------|
|                          |          |              |    | 1999         | 7        | vs 1987      |                    |              |           |                                         |        |
| Building Number          | r:       |              |    |              |          |              |                    |              |           |                                         |        |
| Building Name:           |          | Apollo Offic | 26 | e Building   | Ħ        |              | Gross Area:        |              | 16        | 7 212                                   | $Ft^2$ |
|                          |          |              | T  |              | Т        |              |                    |              |           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |        |
|                          |          |              |    |              |          |              |                    | $\square$    | ++        |                                         |        |
| HEATING: WI              |          | I HER RELAI  |    |              |          |              |                    |              |           |                                         |        |
|                          |          | COST         | •  | CONSUMPTION  | <u> </u> | CONSUMPTION  | DEGREE DAY         | $\mathbf{S}$ | \$        |                                         |        |
|                          | CC       | NSUMPTION    |    | DEGREE DAYS  |          | DEGREE DAYS  |                    |              |           |                                         |        |
|                          |          |              | F  |              |          |              |                    |              |           |                                         |        |
| <u>STEAM:</u>            |          | \$29,787.75  | -  | 3,624.50     | 4        | 3,677.50     | 6,286              | ⊢            | \$        | (1,055.5                                |        |
|                          |          | 3,077.30     | L  | 0,423        | H        | 0,280        |                    |              | -         |                                         |        |
| GAS:                     |          | \$0.00       | F  | 0.00         | Ħ        | 0.00         | 0                  | F            | \$        | 0.00                                    |        |
|                          | <u> </u> | 0.00         |    | 0            | H.       | 0            |                    | Ħ            |           |                                         |        |
|                          |          |              | F  |              | Ħ        |              |                    | E            |           |                                         |        |
| <u>OIL:</u>              |          | \$0.00       |    | 0            |          | 0            | 0                  |              | \$        | 0.00                                    |        |
|                          |          | 0            |    | 0            | Ц.       | <u>O</u>     |                    |              |           |                                         |        |
|                          |          |              | Γ  |              | Г        |              |                    |              |           |                                         |        |
|                          |          |              |    |              | H        |              |                    |              |           |                                         |        |
| ELECTRICAL:              |          | ON-WEATHE    |    | R RELATED    |          |              |                    |              |           |                                         |        |
|                          |          | COST         | 1. | CONSUMPTION  | 1        | CONSUMPTION  |                    |              | \$        |                                         |        |
|                          | CC       | NSUMPTION    |    |              | rt       |              |                    | П            |           |                                         |        |
|                          |          |              | F  |              | Ħ        |              |                    | 曰            |           |                                         |        |
| ELECTRICAL:              |          | \$223,523.46 |    | 3,759,531.00 |          | 2,270,986.00 |                    |              | \$        | 146,511                                 | 13     |
|                          | 2        | 2,270,986.00 | L  |              |          |              |                    |              |           |                                         |        |
|                          |          |              |    |              |          |              |                    |              |           |                                         |        |
|                          |          |              | F  |              | H        |              |                    |              |           |                                         |        |
| HEATING:                 |          | 1987         | -  | 1999         | H        | -            |                    | $\square$    | +         |                                         |        |
| NAMETLIS - 1000          |          | 102.40       |    | 72.40        |          |              |                    | H            | +         |                                         |        |
| SO, FT.                  | -        | 102.49       | Т  | 72.49        | H        |              |                    | $\vdash$     | +         |                                         |        |
| 52.11.                   |          |              | ┝  |              |          |              |                    | $\square$    | +         |                                         |        |
| MMBTUS x 10 <sup>6</sup> | =        | 15.96        | -  | 11.53        | 4        | TOTAL CO     | ST AVOIDANCE       | Ш            | \$        | 145,455                                 | .63    |
| SQ. FT. x D.D.           |          |              |    |              |          | no           | sign is a savings  |              |           |                                         |        |
| COST                     | =        | 1.83         |    | 1.51         |          | mii          | nus sign is a loss |              |           |                                         |        |
| SQ. FT.                  |          |              |    |              |          |              |                    |              |           |                                         |        |
| DEGREE DAYS              | _        | 6.423        |    | 6.286        | Ħ        |              |                    | H            | $\square$ |                                         |        |
|                          |          | 0,720        |    | 0,200        |          |              |                    |              | 1         |                                         |        |

Energy Utilization Index: 1999 Versus 1998 Versus 1987 Base Year

|            | ENERGY UTILIZATION INDEX |   |       |                |        |         |       |             |      |              |  |
|------------|--------------------------|---|-------|----------------|--------|---------|-------|-------------|------|--------------|--|
|            |                          |   |       | J              | anuary | - Decer | nber  |             |      |              |  |
|            |                          |   |       |                |        |         |       |             |      |              |  |
| BUILD      | ING:                     |   | Apo   | ollo Office Bu | ilding |         | SQUA  | ARE FE      | CET: | 167,212      |  |
|            |                          |   |       |                |        |         |       | _           |      |              |  |
| YEAR       | 199                      | 9 |       |                |        |         | DEG   | REE DA      | AYS: | 6,286        |  |
| 2,270,     | ,986.0                   | 0 | кwн   | ( x 3,413 =    | 7      | .75E+09 | BTU'S | C           | DST: | \$223,523.46 |  |
| 3,67       | 77.50                    |   | M-LBS | x 1,189,000 =  | 4      | .37E+09 | BTU'S | C           | OST: | \$29,787.75  |  |
| <u> </u>   | .00                      |   | THERM | S x 100,000 =  | 0      | .00E+00 | BTU'S | C           | OST: | \$0.00       |  |
| 0.         | .00                      |   | GALS  | x 138700 =     | о      | .00E+00 | BTU'S | C           | OST: | \$0.00       |  |
|            |                          |   |       | TOTAL =        | 1      | .21E+10 | BTU'S | C           | DST: | \$253,311.21 |  |
| вт         | J                        | = | 1     | .15E+07        |        |         |       |             |      |              |  |
| $Ft^2 - D$ | D.D.                     |   |       |                |        |         |       |             |      |              |  |
| YEAR       | 199                      | 8 |       |                |        |         | DEG   | +<br>REE DA | AYS: | 5,675        |  |
|            |                          |   |       |                |        |         |       |             |      |              |  |
| 2,49       | 7,709                    |   | KWH   | [x 3,413 =     | 8      | .52E+09 | BTU'S | C           | DST: | \$254,829.61 |  |
| 2,76       | 51.70                    |   | M-LBS | x 1,189,000 =  | 3      | .28E+09 | BTU'S | C           | OST: | \$22,369.77  |  |
| 0.         | .00                      |   | THERM | S x 100,000 =  | 0      | .00E+00 | BTU'S | C           | OST: | \$0.00       |  |
| 0.         | .00                      |   | GALS  | x 138,700 =    | 0      | .00E+00 | BTU'S | C           | OST: | \$0.00       |  |
|            |                          |   |       | TOTAL =        | 1      | .18E+10 | BTU'S | C           | OST: | \$277,199.38 |  |
| вт         | J                        | = | 1     | .24E+07        |        |         |       |             |      |              |  |
| $Ft^2 - D$ | D.D.                     |   |       |                |        |         |       |             |      |              |  |
| YEAR       | 198                      | 7 |       |                | - 12   |         | DEG   | +<br>REE DA | YS:  | 6,423        |  |
|            |                          |   |       |                |        |         |       |             |      |              |  |
| 3,759,     | ,531.0                   | 0 | KWH   | (x 3,413 =     | 1      | .28E+10 | BTU'S | C           | DST: | \$277,029.28 |  |
| 3,62       | 24.50                    |   | M-LBS | x 1,189,000 =  | 4      | .31E+09 | BTU'S | C           | OST: | \$29,358.45  |  |
| 0.         | .00                      |   | THERM | S x 100,000 =  | 0      | .00E+00 | BTU'S | C           | DST: | \$0.00       |  |
| 0.         | .00                      |   | GALS  | x 100,000 =    | о      | .00E+00 | BTU'S | C           | OST: | \$0.00       |  |
|            |                          |   |       | TOTAL =        | 1      | .71E+10 | BTU'S | C           | OST: | \$306,387.73 |  |
| вт         | J                        | = | 1     | .60E+07        |        |         |       |             |      |              |  |
| $Ft^2 - D$ | D.D.                     |   |       |                |        |         |       |             |      |              |  |



### Steam Consumption & Demand And Its Associated Costs

|       | Apollo Office Building |                    |              |                                       |                    |  |  |  |  |  |  |
|-------|------------------------|--------------------|--------------|---------------------------------------|--------------------|--|--|--|--|--|--|
|       |                        | Energy A           | ccounting    |                                       |                    |  |  |  |  |  |  |
|       |                        |                    |              |                                       |                    |  |  |  |  |  |  |
|       |                        | Apollo Off         | ice Building |                                       |                    |  |  |  |  |  |  |
|       |                        | Staare Llaare 1    | Data 8- Dama | i i i i i i i i i i i i i i i i i i i |                    |  |  |  |  |  |  |
|       | <u>_</u>               | <u>Steam Osage</u> | Data & Dema  |                                       |                    |  |  |  |  |  |  |
|       |                        |                    |              |                                       |                    |  |  |  |  |  |  |
|       |                        | 1                  | 1998         |                                       | 1                  |  |  |  |  |  |  |
|       | Consumption            | Rate               | Energy Cost  | Demand Cost                           | Total Energy Costs |  |  |  |  |  |  |
|       | M-Lbs                  | (\$/unit)          | (\$)         | (\$)                                  | (\$)               |  |  |  |  |  |  |
| Jan   | 527.3                  | \$8.73             | \$4.603.33   | \$2.578.00                            | \$7.181.33         |  |  |  |  |  |  |
| Feb   | 448.2                  | \$8.73             | \$3.912.79   | \$2.578.00                            | \$6.490.79         |  |  |  |  |  |  |
| Mar   | 488.6                  | \$8.73             | \$4,265.48   | \$2,578.00                            | \$6,843.48         |  |  |  |  |  |  |
| Apr   | 213.1                  | \$8.73             | \$1.860.36   | \$2,578.00                            | \$4,438,36         |  |  |  |  |  |  |
| May   | 26.5                   | \$8.73             | \$231.35     | \$2,578.00                            | \$2,809.35         |  |  |  |  |  |  |
| Jun   | 0                      | \$8.73             | \$0.00       | \$2,578.00                            | \$2,578.00         |  |  |  |  |  |  |
| Jul   | 0                      | \$8.73             | \$0.00       | \$2,578.00                            | \$2,578.00         |  |  |  |  |  |  |
| Aug   | 0                      | \$8.73             | \$0.00       | \$2,578.00                            | \$2,578.00         |  |  |  |  |  |  |
| Sep   | 0                      | \$8.10             | \$0.00       | \$1,310.00                            | \$1,310.00         |  |  |  |  |  |  |
| Oct   | 139.9                  | \$8.10             | \$1,133.19   | \$1,310.00                            | \$2,443.19         |  |  |  |  |  |  |
| Nov   | 461                    | \$8.10             | \$3,734.10   | \$1,310.00                            | \$5,044.10         |  |  |  |  |  |  |
| Dec   | 457.1                  | \$8.10             | \$3,702.51   | \$1,310.00                            | \$5,012.51         |  |  |  |  |  |  |
| TOTAL | 2761.7                 | \$8.49             | \$23,443.10  | \$25,864.00                           | \$49,307.10        |  |  |  |  |  |  |
|       |                        |                    |              |                                       |                    |  |  |  |  |  |  |
|       |                        |                    |              |                                       |                    |  |  |  |  |  |  |
|       |                        |                    | 1999         |                                       |                    |  |  |  |  |  |  |
|       | Consumption            | Rate               | Energy Cost  | Demand Cost                           | Total Energy Costs |  |  |  |  |  |  |
|       | M-Lbs                  | (\$)               | (\$)         | (\$)                                  | (\$)               |  |  |  |  |  |  |
| Jan   | 919.7                  | \$8.10             | \$7,449.57   | \$1,310.00                            | \$8,759.57         |  |  |  |  |  |  |
| Feb   | 657.2                  | \$8.10             | \$5,323.32   | \$1,310.00                            | \$6,633.32         |  |  |  |  |  |  |
| Mar   | 742.2                  | \$8.10             | \$6,011.82   | \$1,310.00                            | \$7,321.82         |  |  |  |  |  |  |
| Apr   | 215.5                  | \$8.10             | \$1,745.55   | \$1,310.00                            | \$3,055.55         |  |  |  |  |  |  |
| May   | 20.2                   | \$8.10             | \$163.62     | \$1,310.00                            | \$1,473.62         |  |  |  |  |  |  |
| Jun   | 0                      | \$8.10             | \$0.00       | \$1,310.00                            | \$1,310.00         |  |  |  |  |  |  |
| Jul   | 0                      | \$8.10             | \$0.00       | \$1,310.00                            | \$1,310.00         |  |  |  |  |  |  |
| Aug   | 0                      | \$8.10             | \$0.00       | \$1,310.00                            | \$1,310.00         |  |  |  |  |  |  |
| Sep   | 0                      | \$8.10             | \$0.00       | \$1,727.00                            | \$1,727.00         |  |  |  |  |  |  |
| Oct   | 212.9                  | \$8.12             | \$1,728.75   | \$1,727.00                            | \$3,455.75         |  |  |  |  |  |  |
| Nov   | 426.5                  | \$8.12             | \$3,463.18   | \$1,727.00                            | \$5,190.18         |  |  |  |  |  |  |
| Dec   | 483.3                  | \$8.12             | \$3,924.40   | \$1,727.00                            | \$5,651.40         |  |  |  |  |  |  |
| IOTAL | 3677.5                 | \$8.11             | \$29,810.20  | \$17,388.00                           | \$47,198.20        |  |  |  |  |  |  |

# **Energy and Demand Cost Ratios**



### **Steam Consumption & Degree Days Relationship**



### Electric & Steam Consumption In Relation To The Weather



# **Energy Cost/Sq.Ft Budget**



# **Load Factor Data**

|       | Apoll     | o Office Buildi             | ng             |
|-------|-----------|-----------------------------|----------------|
|       | Ene       | ergy Accounting             |                |
|       |           |                             | 3              |
|       | Apol      | lo Office Buildin           | g              |
|       |           |                             |                |
|       | Electrica | <u>l Usage &amp; Load F</u> | Factor         |
|       |           |                             |                |
|       |           | 1998                        |                |
|       | Total KWH | Maximum Demand KW           | Load Factor, % |
| Jan   | 227,418   | 556.80                      | 56.73%         |
| Feb   | 208,619   | 524.40                      | 55.25%         |
| Mar   | 202,848   | 514.80                      | 54.73%         |
| Apr   | 227,492   | 586.80                      | 53.84%         |
| May   | 220,125   | 608.40                      | 50.25%         |
| Jun   | 222,917   | 620.40                      | 49.90%         |
| Jul   | 245,599   | 633.60                      | 53.84%         |
| Aug   | 219,681   | 621.60                      | 49.09%         |
| Sep   | 210,197   | 601.20                      | 48.56%         |
| Oct   | 183,938   | 583.20                      | 43.80%         |
| Nov   | 163,117   | 458.40                      | 49.42%         |
| Dec   | 165,758   | 464.40                      | 49.57%         |
| TOTAL | 2,497,709 | 6,774.00                    | 51.21%         |
|       |           |                             |                |
|       |           |                             |                |
|       |           | 1999                        |                |
|       | Total KWH | Maximum Demand KW           | Load Factor, % |
| Jan   | 203,383   | 502.80                      | 56.18%         |
| Feb   | 179,951   | 472.80                      | 52.86%         |
| Mar   | 185,158   | 470.40                      | 54.67%         |
| Apr   | 186,749   | 505.20                      | 51.34%         |
| May   | 178,854   | 568.80                      | 43.67%         |
| Jun   | 202,773   | 624.00                      | 45.13%         |
| Jul   | 226,457   | 631.20                      | 49.83%         |
| Aug   | 213,470   | 592.80                      | 50.01%         |
| Sep   | 196,599   | 546.00                      | 50.01%         |
| Oct   | 172,914   | 522.00                      | 46.01%         |
| Nov   | 160,089   | 514.80                      | 43.19%         |
| Dec   | 164,589   | 448.80                      | 50.93%         |
| TOTAL | 2,270,986 | 6,399.60                    | 49.29%         |

# **Electric Consumption**

Apollo Office Building Electric Consumption January - December



# **Electrical Demand Data**







# **Electric Load Factors Comparison**



## **Electric Peak Demand - 1999 Versus 1998**



## **Energy Consumption Characteristics In Buildings**

#### **BUILDING ENERGY CONSUMPTION CHARACTERISTICS**

On a national basis, the systems in buildings which will consume the most energy are,

in descending order:

1 Heating and Ventilating 2 Lighting 3 Cooling and Ventilating

4 Domestic Hot Water

The amount of energy consumed in a given building depends upon climate, building construction,

use and type of operation, control and efficiency of the mechanical and electrical equipment.

Climate conditions generally are considered to be the most important of all conditions affecting energy consumption.

#### **BUILDING LOADS**

Energy consumption can be divided between two types of loads: Weather-Dependent Load and Base-Load. The weather-dependent load is self descriptive. It includes the heating, ventilating and air conditioning loads.

Base-Load consists of systems that are not affected by weather or, if they are, just slightly. For example, the lighting load is affected very little by weather, unless you are somehow relying on natural daylight. Elevator load is not affected by weather, except to the extent that it may receive less use when fewer people come in due to extremely inclement conditions.

## **Typical Commercial Building Energy Usage**





# **Degree Days & BTU Definitions**

| <b>DEGREE I</b>      | DAYS D                                          | EFINIT               | TION         |               |             |                |              |             |          |  |  |
|----------------------|-------------------------------------------------|----------------------|--------------|---------------|-------------|----------------|--------------|-------------|----------|--|--|
|                      |                                                 |                      |              |               |             |                |              |             |          |  |  |
| Outdoor air tempe    | rature is a ma                                  | ajor climatio        | c variable a | ffecting en   | ergy use.   | The tempe      | rature is us | sually      |          |  |  |
| discussed in terms   | s of "degree                                    | days' - hea          | ting degree  | e days and    | cooling de  | egree days.    | The num      | ber of      |          |  |  |
| heating degree da    | ys in a regula                                  | ar 24-hour d         | day is dete  | rmined as t   | he differen | ce between     | n 65°F and   | the         |          |  |  |
| average of the hig   | h and low te                                    | mperature f          | for a specif | ic day in qu  | uestion. F  | or example,    | if the low   |             |          |  |  |
| temperature on a p   | oarticular day                                  | v is 35°F, ar        | nd the high  | is 55°F, th   | is day wou  | ld have 20     | heating de   | egree       |          |  |  |
| days derived as f    | ollows:                                         |                      |              |               |             |                |              |             |          |  |  |
|                      |                                                 |                      |              |               |             |                |              |             |          |  |  |
| High Te              | emperature:                                     | 55°F                 |              |               |             |                |              |             |          |  |  |
| Low Te               | mperature:                                      | 35°F                 |              |               |             |                |              |             |          |  |  |
|                      |                                                 |                      |              |               |             |                |              |             |          |  |  |
| Averag               | Average of High and Low $55 + 35 = 45^{\circ}F$ |                      |              |               |             |                |              |             |          |  |  |
|                      |                                                 |                      |              |               |             |                |              |             |          |  |  |
| Heating              | ; Degree Day                                    | $rs = 65^{\circ}F$ - | Average      | of high and   | low tempe   | erature $= 65$ | °F - 45°F =  | -           |          |  |  |
| 20 deg               | ree days for t                                  | that specifi         | c day.       |               |             |                |              |             |          |  |  |
| Adding               | all degree d                                    | ays each da          | ay represei  | nts a total c | legree day  | per year.      |              |             |          |  |  |
| Roches               | ster's rated h                                  | eating deg           | ree days po  | er year is 6  | 719.        |                |              |             |          |  |  |
|                      |                                                 |                      |              |               |             |                |              |             |          |  |  |
| Cooling              | g degree days                                   | s are deterr         | nined in a s | imilar manı   | ner, except | that 65°F i    | s subtracte  | ed from the | average. |  |  |
|                      |                                                 |                      |              |               |             |                |              |             |          |  |  |
|                      |                                                 |                      |              |               |             |                |              |             |          |  |  |
| <b>BTU DEFI</b>      | <u>NITION</u>                                   |                      |              |               |             |                |              |             |          |  |  |
|                      |                                                 |                      |              |               |             |                |              |             |          |  |  |
| Btu is short for Br  | itish Therma                                    | l Unit, whic         | h is the an  | ount of he    | at needed   | to raise on    | e pound      |             |          |  |  |
| of water 1F. It is a | lso equivale                                    | nt to the er         | ergy produ   | uced by on    | e kitchen r | natch.         |              |             |          |  |  |



#### Energy Utilization Index Computation Based On Its Btu's Value, Square Foot & Degree Days

| TO CO  | OMPUTE THE ENERGY UTILIZATION INDEX (EUI), 7 | THE FOLLO | WING IS DONE: |           |     |
|--------|----------------------------------------------|-----------|---------------|-----------|-----|
|        |                                              |           |               |           |     |
|        |                                              |           |               |           |     |
|        | Total Electricity Used in KWH x 3.413        | =         |               | BTUs      |     |
|        |                                              |           |               |           |     |
|        | Total Gas Used in Therms x 100,000           | =         |               | BTUs      |     |
|        |                                              |           |               |           |     |
|        | Total #2 Oil Used in Gallons x 138,700       | =         |               | BTUs      |     |
|        |                                              |           |               |           |     |
|        | Total #6 Oil Used in Gallons x 146,000       | =         |               | BTUs      |     |
|        |                                              |           |               |           |     |
|        | Total Steam Used in Lbs x 1,189              | =         |               | BTUs      |     |
|        |                                              |           |               |           |     |
|        | Total Coal Used in Short Tons x 26 x 106     | =         |               | BTUs      |     |
|        |                                              |           |               |           |     |
|        | Total BTUs                                   | =         |               | BTUs      |     |
|        |                                              |           |               |           |     |
|        | Total Degree Days                            | =         |               |           |     |
|        |                                              |           |               |           |     |
|        | Gross Conditioned Area                       | =         |               | Square Fe | eet |
|        |                                              |           |               |           |     |
|        | $EUI = \underline{BTUs}$                     |           |               |           |     |
|        | Gross Conditioned Area x Degree Days         |           |               |           |     |
|        |                                              |           |               |           |     |
|        |                                              |           |               |           |     |
| Theref | ore, EUI =                                   | BTUs/Sq   | I.Ft./D.D.    |           |     |

## **Energy Cost Avoidance Equations**





| DEFINI               | TIONS            | AND FC                 | ORMULAS                                      |                          |                      |            |                 |             |
|----------------------|------------------|------------------------|----------------------------------------------|--------------------------|----------------------|------------|-----------------|-------------|
|                      |                  |                        |                                              |                          |                      |            |                 |             |
| 1 KWH                | = 3,413 B        | TUs                    |                                              |                          |                      |            |                 |             |
| 1 Therm              | = 100,000        | ) BTUs                 |                                              |                          |                      |            |                 |             |
| 1 Lb. of St          | = 1,189 B        | TUs                    |                                              |                          |                      |            |                 |             |
| 1 BTU                | = Amoun          | t of Heat N            | leeded to Raise 1 Po                         | ound of Wa               | ater 1 oF            |            |                 |             |
| 1 M-Lb               | = 1,000 L        | bs of Stean            | n                                            |                          |                      |            |                 |             |
| D.D.                 | = Degree         | Days (See              | Attached Explanation                         | on)                      |                      |            |                 |             |
|                      |                  |                        |                                              |                          |                      |            |                 |             |
|                      |                  |                        |                                              |                          |                      |            |                 |             |
| FORMUL               | A                |                        |                                              |                          |                      |            |                 |             |
|                      |                  |                        |                                              |                          |                      |            |                 |             |
|                      |                  | ת ת / א                | Total BTUs                                   | 2                        |                      | Sa Et      | Total           | BTUS        |
|                      | 1075 <b>4</b> .1 | $i \neq D.D.$          | $\overline{Sq.Ft \ x \ D.D.}$                | <u> </u>                 |                      | 99.1°i -   | $\overline{Sq}$ | . <i>Ft</i> |
|                      |                  |                        |                                              |                          |                      |            |                 |             |
|                      |                  |                        |                                              | Doll                     | . Covinas            |            |                 |             |
|                      | 3.               | % in Dolla             | $r = \frac{1}{\sqrt{1-r}}$                   |                          | ur savings           | ~ .        | -x 100          |             |
|                      |                  |                        | (Total                                       | Present C                | ost + Doll           | ar Savings | 5) —            |             |
|                      |                  |                        |                                              |                          |                      |            |                 |             |
|                      |                  |                        |                                              |                          |                      |            |                 |             |
|                      |                  |                        |                                              |                          |                      |            |                 |             |
| Example              |                  |                        |                                              | 200                      |                      |            |                 |             |
| Example:             |                  | % in Dol               | lar Savings = $-\frac{1}{6}$                 | $\frac{200}{1.000 + 20}$ | $\frac{1}{100} = 16$ | 5.6%       |                 |             |
| Example:             |                  | % in Dol               | lar Savings = $-$                            | 200<br>1,000 + 20        | $\overline{0)} = 16$ | 5.6%       |                 |             |
| Example:<br>BTU/Sq.F | řt Energ         | % in Doll<br>y Consume | lar Savings = -(<br>(<br>ed For a Given Area | 200<br>1,000 + 20        | $\overline{0)} = 10$ | 5.6%       |                 |             |





